基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对病理图像染色不均匀及良恶性难以鉴别的问题,提出基于Cycle-GAN和改进的双路径网络(DPN)的算法框架.利用Cycle-GAN进行颜色归一化处理,解决因病理图像染色不均匀导致的检测模型精度偏低问题,通过对图像进行重叠切片,基于DPN网络采用增加小卷积、反卷积和注意力机制,增强模型对病理图像纹理特征的分类能力.在BreaKHis数据集上的实验结果表明,所提算法有效提高了乳腺癌病理图像良恶性分类的准确性.
推荐文章
基于级联分类器的乳腺癌病理学图像中有丝分裂检测
级联分类器
乳腺癌
病理图
有丝分裂检测
颜色直方图
基于深度学习的乳腺癌病理图像自动分类
乳腺癌病理图像分类
深度学习
卷积神经网络
迁移学习
数据增强
基于深度学习的乳腺癌病理图像分类研究综述
计算机辅助诊断
乳腺癌病理图像
图像分类
深度学习
基于卷积神经网络和迁移学习的乳腺癌病理图像分类
乳腺癌病理图像
卷积神经网络
图像分块
多数投票算法
迁移学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Cycle-GAN和改进DPN网络的乳腺癌病理图像分类
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 乳腺癌病理图像分类 深度学习 Cycle-GAN网络 双路径网络(DPN) 注意力机制
年,卷(期) 2022,(4) 所属期刊栏目 计算机技术、信息工程|Computer Technology, Information Engineering
研究方向 页码范围 727-735
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2022.04.012
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
乳腺癌病理图像分类
深度学习
Cycle-GAN网络
双路径网络(DPN)
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
论文1v1指导