基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,随着深度学习技术在语音识别领域的出色表现,基于深度学习的语音识别系统被广泛应用于智能家居、智能客服、会议纪要、实时字幕等多个应用场景.但由于中国民族众多,语言文化差异大、方言多样复杂等特点,给语音识别系统带来了很大的挑战,特别针对短时语音段方言识别任务,已有的中国方言分类系统性能依然较差.针对特征参数梅尔倒谱系数(mel-scale frequency cepstral coefficients,MFCC)进行研究分析,面向中国十种方言数据集构建基于深度学习的方言分类模型.首先,针对MFCC构建基于短期记忆网络(long short-term memory,LSTM)的单任务学习模型,准确率可达79.04%;然后,深入挖掘方言地域特征,提出以方言所在区域为辅助任务的多任务模型,构建基于参数硬共享的多任务学习模型,实验结果显示,分类准确率最高可达79.96%;最后,针对参数硬共享无法有效挖掘子任务间关联性的问题,首次提出基于参数稀疏共享的多任务学习模型,该模型通过联合训练,自动挖掘子任务间相关性,裁剪多余网络,并进行网络参数共享,实验结果显示,提出的基于MFCC特征的参数稀疏共享的多任务分类模型性能最优,分类准确率最高可达83.59%.
推荐文章
基于多任务学习的自然图像分类研究
多任务学习
自然图像
相关性
基于多任务学习的多源数据分类研究
多源学习
多分类
任务相关性
多任务学习
基于μCOS-II的实时多任务应用研究
嵌入式
实时操作系统
资源竞争
基于多任务学习的自然图像分类研究
多任务学习
自然图像
相关性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多任务学习在中国方言分类中的应用研究
来源期刊 计算机技术与发展 学科 工学
关键词 中国方言分类 多任务学习 神经网络 MFCC 神经网络参数共享
年,卷(期) 2022,(4) 所属期刊栏目 应用前沿与综合
研究方向 页码范围 109-115
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2022.04.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
中国方言分类
多任务学习
神经网络
MFCC
神经网络参数共享
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导