Additive manufacturing-also known as 3D printing-has attracted much attention in recent years as a powerful method for the simple and versatile fabrication of complicated three-dimensional structures.However,the current technology still exhibits a limitation in realizing the selective deposition and sorting of various materials contained in the same reservoir,which can contribute sig-nificantly to additive printing or manufacturing by enabling simultaneous sorting and deposition of different substances through a single nozzle.Here,we propose a dielectrophoresis(DEP)-based material-selective deposition and sorting tech-nique using a pipette-based quartz tuning fork (QTF)-atomic force microscope (AFM) platform DEPQA and demonstrate multi-material sorting through a single nozzle in ambient conditions.We used Au and silica nanoparticles for sorting and obtained 95% accuracy for spatial separation,which confirmed the surface-enhanced Raman spectroscopy (SERS).To validate the scheme,we also performed a simulation for the system and found qualitative agreement with the experimental results.The method that combines DEP,pipette-based AFM,and SERS may widely expand the unique capabilities of 3D printing and nano-micro patterning for multi-material patterning,materials sorting,and diverse advanced applications.