基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
半导体光催化是一种利用半导体将太阳能转换为高能化学能的绿色技术,在可再生清洁能源生产和污染物修复领域有着巨大的应用前景.石墨相氮化碳(g-C3N4)作为一种环境友好的非金属半导体,因其制备工艺简单、来源丰富、热稳定性和化学稳定性好、可见光吸收范围及特殊的电子性能而受到广泛关注.但一般常用氮源前驱体如二氰二胺、三聚氰胺等所制备的块状石墨相氮化碳存在团聚、比表面积小和光生载流子分离效率低等问题,严重抑制了其光催化活性.本文采用前驱体改性法制得具有高效光催化活性的石墨相氮化碳.利用氰基在酸性条件下易水解这一特性,通过调节不同种类和浓度的酸(硝酸、盐酸、磷酸等)改性二氰二胺,制得一系列新前驱体,通过焙烧制备石墨相氮化碳.采用X射线粉末衍射、X射线光电子能谱、傅立叶变换红外光谱、透射电子显微镜和场发射扫描电子显微镜等表征手段对前驱体及氮化碳的结构及微观形貌进行研究.结果表明,通过浓硝酸改性二氰二胺成功制得脒基脲硝酸盐,其煅烧后所得的HNO3-CN(5H-CN)催化剂具有较好的薄层多孔结构,且面内三均三嗪环末端具有丰富的氨基官能团.TG-FTIR结果表明,5H-CN通过不同于传统氮化碳的热缩合过程,导致了其多孔富氨基的结构.光催化性能测试表明,5H-CN对光催化降解罗丹明B(RhB)具有最佳的催化活性,其准一级速率常数达0.05316 min-1,是普通块状石墨相氮化碳(CN)的34倍.此外,5H-CN的光催化制氢性能也远远高于CN.通过紫外-可见漫反射光谱、莫特-肖特基曲线和瞬态光电流测试等方法研究催化剂的形貌结构对光催化活性的影响.结果表明,5H-CN催化剂具有较高的光催化活性主要归因于其薄层多孔结构提供了更大的比表面积(148.76 m2 g-1),表面有更多的活性位点,同时有助于光生载流子的有效分离;其面内三均三嗪环的末端边缘丰富的氨基结构使得其能带结构发生变化,更负的导带位置使其光生电子的还原能力更强,从而有利于光催化反应的进行.其光催化机理归纳如下:在5H-CN催化剂光催化降解RhB过程中,O2?-作为最主要的活性物种可与空穴(h+)同时氧化催化剂表面的RhB分子,从而达到光催化降解RhB的作用;在5H-CN催化剂光催化制氢过程中,铂(3 wt%Pt)作为助催化剂可以负导带上的光生电子(e-)快速迁移,迁移的e-可以直接还原水中的氢质子生成氢气.
推荐文章
氨基修饰片状氮化碳的制备及光催化性能
氨基修饰
片状氮化碳
光催化
氧化降解
稳定性
反蛋白石结构石墨型氮化碳制备及光催化降解研究
石墨型氮化碳
光子晶体
光催化降解
石墨相氮化碳光催化剂研究进展
石墨相氮化碳
催化剂
太阳能
制氢
聚合物
木棉纤维改性氮化碳光催化降解有机污染物
氮化碳
木棉纤维
生物质
光催化
降解
催化剂
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 前驱体改性法制备薄层多孔富氨基的石墨相氮化碳用于光催化降解RhB和光催化制氢
来源期刊 催化学报 学科
关键词 前驱体改性法 石墨相氮化碳 光催化降解 光催化制氢 富氨基结构
年,卷(期) 2022,(2) 所属期刊栏目 论文|Articles
研究方向 页码范围 497-506
页数 10页 分类号
字数 语种 中文
DOI 10.1016/S1872-2067(21)63873-1
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
前驱体改性法
石墨相氮化碳
光催化降解
光催化制氢
富氨基结构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
催化学报
月刊
0253-9837
21-1195/O6
大16开
辽宁省大连市中山路457号(大连110信箱)
8-93
1980
chi
出版文献量(篇)
5062
总下载数(次)
23
总被引数(次)
65041
论文1v1指导