基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于内窥镜的微创手术机器人在临床上的应用日益广泛,为医生提供内窥镜视频中精准的手术器械分割信息,对提高医生操作的准确度、改善患者预后有重要意义.现阶段,深度学习框架训练手术器械分割模型需要大量精准标注的术中视频数据,然而视频数据标注成本较高,在一定程度上限制了深度学习在该任务上的应用.目前的半监督方法通过预测与插帧,可以改善稀疏标注视频的时序信息与数据多样性,从而在有限标注数据下提高分割精度,但是这些方法在插帧质量与对连续帧时序特征方面存在一定缺陷.针对此问题,提出了一种带有时空Transformer的半监督分割框架,该方法可以通过高精度插帧与生成伪标签来提高稀疏标注视频数据集的时序一致性与数据多样性,在分割网络bottleneck位置使用Transformer模块,并利用其自我注意力机制,从时间与空间两个角度分析全局上下文信息,增强高级语义特征,改善分割网络对复杂环境的感知能力,克服手术视频中各类干扰从而提高分割效果.提出的半监督时空Transformer网络在仅使用30%带标签数据的情况下,在MICCAI 2017手术器械分割挑战赛数据集上取得了平均DICE为82.42%、平均IoU为72.01%的分割结果,分别超过现有方法7.68%与8.19%,并且优于全监督方法.
推荐文章
手术器械的环节管理
手术室
手术器械
环节管理
手术器械的合理选定与使用
手术器械
报废
合理选定
使用
提高手术器械准备完善率
手术室
手术器械
准备完善率
缩短手术器械周转时间
手术器械
消毒供应中心
周转时间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向手术器械语义分割的半监督时空Transformer网络
来源期刊 软件学报 学科 工学
关键词 视频序列 时空特征 手术器械分割 Transformer 半监督学习
年,卷(期) 2022,(4) 所属期刊栏目 面向开放场景的鲁棒机器学习专刊|SPECIAL ISSUE ON ROBUST MACHINE LEARNING IN THE OPEN-WORLD SCENARIOS
研究方向 页码范围 1501-1515
页数 15页 分类号 TP391
字数 语种 中文
DOI 10.13328/j.cnki.jos.006469
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频序列
时空特征
手术器械分割
Transformer
半监督学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导