基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对太阳能电池板隐裂缺陷在进行光学检测时存在的特征不明显问题,以及小样本导致的训练不充分问题,提出了基于元迁移的太阳能电池板缺陷图像超分辨率重建方法,采用联合训练方法,利用内部图像和外部大规模图像信息分别作为不同阶段的训练数据.首先将引入的大量数据用于模型的初步训练,学习外部大规模数据的公共特征,然后通过元学习模型MAML进行多任务训练,为快速适应小样本无监督任务寻找一个适合图像内部学习的初始参数,提高模型的泛化能力,最后将预训练参数迁移至改进的ZSSR中进行自监督学习.在DIV2K、Set5、BSD100和太阳能电池板电致发光成像数据集上进行训练,实验结果表明,与传统的CARN,RCAN,IKC,ZSSR方法相比,该方法具有更高的峰值信噪比,最高达到36.66,参数量更小,相比ZSSR降低了70000,图像重建时间更短,相比CARN降低了0.51 s,具有更好的重建效果,更高的重建效率.
推荐文章
太阳能电池板缺陷分割技术研究
前景提取
灰度差分
二维最大类间方差法
太阳能电池板
缺陷分割
太阳能电池板串并联特性的实验研究
太阳能电池板
串联
并联
混联
输出特性
卫星上太阳能电池板光散射特性的实验测试
双向反射分布函数
遗传模拟退火算法
光散射
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于元迁移的太阳能电池板缺陷图像超分辨率重建方法
来源期刊 计算机科学 学科 工学
关键词 太阳能电池板缺陷 超分辨率重建 元学习 卷积神经网络 DIV2K训练集
年,卷(期) 2022,(3) 所属期刊栏目 计算机图形学&多媒体|Computer Graphics & Multimedia
研究方向 页码范围 185-191
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.11896/jsjkx.210100234
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
太阳能电池板缺陷
超分辨率重建
元学习
卷积神经网络
DIV2K训练集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导