基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了准确预测综采工作面基本顶周期来压规律,采用灰度系统理论提取了影响综采工作面周期来压的八个显著因素.针对支持向量机(SVR)预测模型过分依赖主观选择的参数问题,建立了粒子群算法优化参数选择的支持向量机(P SO-SVR)预测模型.试验结果得出:P SO-SVR比SVR模型在周期来压强度和步距的均方误差分别降低为47.7%、74.3%,决定系数分别提升为45.7%、44.6%.为突显PSO-SVR模型性能的优越性,与应用最广泛的BP普通神经网络进行了对比试验,粒子群算法对标准支持向量机模型性能优化效果明显,较普通BP神经网络优势显著.可见,P SO-SVR对于多种因素影响的非线性耦合预测具有较高的精度和较强的泛化性.
推荐文章
应用灰关联分析的PSO-SVR工程造价预测模型
工程造价
PSO-SVR预测模型
粒子群优化算法
灰关联分析
旅游客流量预测:基于季节调整的PSO-SVR模型研究
旅游客流量预测
粒子群算法
支持向量回归机
季节调整
均方差比较
基于 InSAR 监测和 PSO-SVR 模型的高填方区沉降预测
高填方区域
粒子群算法
支持向量机回归
形变预测
基于PSO-SVR航站楼CO2浓度时间序列预测
支持向量回归
粒子群优化算法
航站楼
CO2浓度数据
时间序列预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-SVR预测模型的综采工作面周期来压研究
来源期刊 煤炭工程 学科 工学
关键词 支持向量机 粒子群 神经网络 周期来压 灰度理论
年,卷(期) 2022,(4) 所属期刊栏目 研究探讨|Research and Discussion
研究方向 页码范围 86-91
页数 6页 分类号 TD323
字数 语种 中文
DOI 10.11799/ce202204016
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
粒子群
神经网络
周期来压
灰度理论
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤炭工程
月刊
1671-0959
11-4658/TD
大16开
北京市德外安德路67号
80-130
1954
chi
出版文献量(篇)
11020
总下载数(次)
16
总被引数(次)
55785
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导