基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
多标签图像分类问题是计算机视觉领域的重要问题之一,它需要对图像中的所有标签进行预测.而一幅图像中待分类的标签个数往往不止一个,同时图像中对象的大小、位置和姿态的变化都会对模型的分类性能产生影响.因此,如何有效地提高图像特征的准确表达能力是一个亟需解决的难题.针对上述难题,文中提出了一个新颖的双流重构网络来对图像进行特征抽取.具体而言,该模型首先应用一个双流注意力网络来对图像进行基于通道信息和空间信息的特征提取,并经过特征拼接使得图像特征同时兼顾通道特征细节信息和空间特征细节信息.其次,该模型引入了重构损失函数,对双流网络进行特征约束,迫使上述两种分歧特征具有相同的特征表达能力,以此促使提取的双流特征共同向真值特征迫近.在基于VOC 2007和MS COCO多标签图像数据集上的实验结果表明,所提出的双流重构网络能够准确有效地提取出显著特征,并产生更好的分类精度.同时,鉴于重建损失对模型的解拟合作用,将该方法应用在小样本场景上,实验结果显示,所提模型对小样本数据同样具有较好的分类精度.
推荐文章
基于特征关系依赖网络的小样本学习方法
深度学习
小样本学习
度量学习
特征优化
原型调整
基于边缘感知和小样本学习的多尺度带钢表面缺陷分割方法
语义分割
表面缺陷检测
小样本学习
特征金字塔注意力
全局注意力上采样模块
基于小样本集弱学习规则的KNN分类算法
机器学习
K-最近邻分类
小样本集
标签数据
弱学习规则
浮空器主缆绳表面的小样本学习缺陷检测研究
缺陷检测
小样本学习
度量学习
浮空器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向多标签小样本学习的双流重构网络
来源期刊 计算机科学 学科 工学
关键词 多标签图像识别 特征重构 深度学习 小样本学习 图像注意力机制
年,卷(期) 2022,(1) 所属期刊栏目 计算机图形学&多媒体|Computer Graphics & Multimedia
研究方向 页码范围 212-218
页数 7页 分类号 TP183
字数 语种 中文
DOI 10.11896/jsjkx.201100143
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多标签图像识别
特征重构
深度学习
小样本学习
图像注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
总被引数(次)
150664
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导