基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
上市公司年报中的描述性文本信息是上市公司信息披露的重要组成部分,通过对上市公司信息披露文本的挖掘与分析可以提高对其财务风险的预测能力.基于BERT(bidirectional encoder representations from transformer)模型与自编码器(autoencoder,AE),提出了BERT-AE融合文本特征提取模型,提取A股市场531家上市公司年报中"经营情况讨论与分析"和"审计报告"的文本特征,构建能够反映财务困境公司与正常公司的文本特征指标,随后将文本特征指标与财务指标数据结合,分别使用Logistic回归、极端梯度提升(extreme gradient boosting,XGBoost)、人工神经网络(artificial neural networks,ANN)、卷积神经网络(convolutional neural networks,CNN)四种模型,检验加入文本特征指标后财务风险预测的准确性是否得到提高,并使用Word2Vec-CNN-AE、Word2Vec-LSTM-AE模型提取财务文本特征进行对比实验.结果表明,三种模型提取的财务文本特征均能使财务预警模型预测的AUC得到提升,且BERT-AE模型提取的财务文本特征使得四种财务预警模型预测的AUC值提升效果更为显著,表明BERT-AE模型有效地提取了财务文本特征,提高了上市公司财务风险预警模型的预测能力.
推荐文章
基于新闻文本的上市公司财务困境组合预测模型
财务困境预测
文本分类
组合预测模型
支持向量机
Logistic
基于GA-SVM的上市公司财务危机预警研究
财务危机
预警
遗传算法
支持向量机
基于SPSS分析平台的上市公司财务预警模型
财务失败
SPSS
预测模型
实证检验
航运上市公司财务预警的Logistic回归分析
财务预警
Logistic回归分析
风险控制
航运
上市公司
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于文本挖掘的上市公司财务风险预警研究
来源期刊 计算机工程与应用 学科 工学
关键词 财务风险预警 文本挖掘 BERT模型 自编码器 文本特征
年,卷(期) 2022,(4) 所属期刊栏目 工程与应用|Engineering and Applications
研究方向 页码范围 255-266
页数 12页 分类号 TP391
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2107-0423
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
财务风险预警
文本挖掘
BERT模型
自编码器
文本特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导