原文服务方: 高压电器       
摘要:
绝缘和机械故障是气体绝缘金属封闭开关设备(gas insulated metal-enclosed switchgear,GIS)中占比最大的故障类型,准确的故障诊断和状态评价对保证电力系统安全稳定运行具有重要意义。深度学习方法已成为故障诊断领域的主流,但传统卷积神经网络需要强大的计算资源,在计算能力一般的智能终端设备中难以应用。为此,文中提出了基于轻量级卷积神经网络的GIS绝缘和机械故障诊断方法。首先,采用空间可分离卷积代替传统卷积构造EffNet轻量级卷积神经网络,大幅度降低了模型的计算量;其次,采用迁移学习策略进行模型训练,在提升网络识别准确率的同时加快了模型的收敛速度,解决了现场数据不足的问题;最后,通过t分布随机邻近嵌入对卷积神经网络特征进行可视化,进一步验证了模型的性能。研究结果表明,具有5个EffNet卷积块的轻量级卷积神经网络模型在绝缘和机械故障诊断中的准确率分别达到94.7%和98.7%,并显著降低了参数量、存储空间和计算开销等,适用于GIS智能组件和检测仪器,是电力物联网下嵌入式系统和移动终端的最佳选择。
推荐文章
基于轻量级卷积神经网络的复合绝缘子憎水性诊断方法研究
复合绝缘子
憎水性
卷积神经网络
EfficientNet
边缘计算
基于VPRS和神经网络的旋转机械故障诊断
故障诊断
变精度粗糙集
离散化
约简
人工神经网络
基于LabVIEW和BP神经网络的旋转机械故障诊断研究
旋转机械
LabVIEW
BP神经网络
故障诊断
基于神经网络的旋转机械故障诊断研究
故障诊断
神经网络
旋转机械
智能诊断
感知器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于轻量级卷积神经网络的GIS绝缘和机械故障诊断方法
来源期刊 高压电器 学科
关键词 气体绝缘金属封闭开关设备 故障诊断 轻量级卷积神经网络 迁移学习 电力物联网
年,卷(期) 2024,(9) 所属期刊栏目 研究与分析
研究方向 页码范围 201-210
页数 10页 分类号
字数 语种 中文
DOI 10.13296/j.1001-1609.hva.2023.09.024
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2024(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
气体绝缘金属封闭开关设备
故障诊断
轻量级卷积神经网络
迁移学习
电力物联网
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高压电器
月刊
1001-1609
61-1127/TM
大16开
西安市西二环北段18号
1958-01-01
汉语
出版文献量(篇)
635
总下载数(次)
0
总被引数(次)
0
论文1v1指导