原文服务方: 草业学报       
摘要:
青藏高原的植被覆盖度是生态研究和环境监测的重要指标。传统的植被覆盖度检测方法在地形简单且植被分布集中的区域效果较好,但在复杂地形下由于成本高、调查范围受限、耗时长等问题,导致植被提取精度受限。近年来,计算机视觉和深度学习技术的飞速发展为青藏高原复杂地形下的植被精准提取开辟了新的可能性。本研究提出一种结合YOLOv5和改进DeeplabV3+的双阶段植被提取算法。算法引入基于YOLOv5的植被目标检测模型,以减少背景对第二阶段植被分割任务的干扰;设计新型的DeeplabV3+语义分割模型,以实现精准的植被分割提取。改进的模型引入了轻量级主干网络MobileNetV2、优化了ASPP模块膨胀卷积参数,并集成EMA和CloAttention注意力机制。在青藏高原无人机航拍数据集上的实验结果显示,本算法在交并比(IoU)和像素准确率(PA)上分别达到了90.40%和96.32%,显著超过现有技术,且大幅降低了模型参数。本算法在多种环境条件下均展示了高精度的植被提取能力,可以为青藏高原植被覆盖度的快速、精准测定提供有效的技术支持。
推荐文章
改进 YoloV5 的行人检测算法
目标检测
行人遮挡检测
随机擦除
Res2Net
注意力机制
Confluence
基于Swin Transformer的YOLOv5安全帽佩戴检测方法
安全帽佩戴检测
YOLOv5
Swin Transformer
Ghost
新型跨尺度特征融合
K-means++
基于改进YOLOv5的飞行员异常行为识别方法
YOLOv5
飞行员异常行为识别
航空安全
目标检测
数据增强
基于改进YOLOv5的轻量化航空目标检测方法
深度学习
目标检测
注意力
模型压缩
通道剪枝
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于YOLOv5和改进DeeplabV3+的青藏高原植被提取算法
来源期刊 草业学报 学科 工学
关键词 青藏高原;植被提取;深度学习;YOLOv5;DeeplabV3+
年,卷(期) 2025,(1) 所属期刊栏目
研究方向 页码范围 41-54
页数 14页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2025(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
青藏高原;植被提取;深度学习;YOLOv5;DeeplabV3+
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
草业学报
月刊
1004-5759
62-1105/S
兰州市嘉峪关西路768号
1990-01-01
中文
出版文献量(篇)
145
总下载数(次)
0
总被引数(次)
0
论文1v1指导