Citation of the C60^4+ is the same in the two collisions. The strong C+ peak produced in Ar^+-C60 must be due to the elastic collisions (nuclear stopping), because the Ar+ is heavy enough to knock out the C^+ from C60 molecule. In general, the excitation energy depends on the projectile velocity, charge, and mass. Direct vibronic excitation by elastic collisions (nuclear stopping) is predicted for slow heavy ions, while the electronic excitation (electronic stopping) is dominant for fast ions[1]. For example, Schlatholter, et al.[2] found a strong velocity effect in collisions of He^+ with fullerene in the velocity range from 0.1 to 1 a.u. With increasing velocity, the C2 evaporation process decreases and the multi-fragmentation is linearly increasing.