基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
根据陈文原单值映射的拓扑度延拓,在Banach空间引入了一个关于Hausdorff度量的不等式.然后,利用此不等式,在Banach空间对于上半连续集值映射建立了拓扑度延拓的相关结论.
推荐文章
严格集压缩映射和凝聚映射的延拓定理及应用
k-集压缩映射
凝聚映射
延拓定理
拓扑度计算
郭大钧定理
上半连续集值1-集压缩映射的不动点定理
集值1-集压缩映射
不动点
上半连续
半紧
关于集值映射的Caristi定理
集值映射
线性空间
不动点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 集值映射拓扑度的延拓定理
来源期刊 重庆大学学报(自然科学版) 学科 数学
关键词 集值映射 拓扑度 Banach空间 Hausdorff度量
年,卷(期) 2004,(6) 所属期刊栏目
研究方向 页码范围 99-101
页数 3页 分类号 O177
字数 2551字 语种 中文
DOI 10.3969/j.issn.1000-582X.2004.06.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张谋 重庆大学数理学院 13 20 2.0 3.0
2 魏曙光 重庆大学数理学院 12 42 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(1)
  • 二级参考文献(0)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
集值映射
拓扑度
Banach空间
Hausdorff度量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆大学学报
月刊
1000-582X
50-1044/N
大16开
重庆市沙坪坝正街174号
78-16
1960
chi
出版文献量(篇)
6349
总下载数(次)
8
总被引数(次)
85737
论文1v1指导