摘要:
例差数列;(3)若C的方程为x2a2+y2b2=1(a>b>0),点P1(a,0),对于给定的自然数n,当公差d变化时,求Sn的最小值.解(1)∵P1(3,0),则a1=OP12=9.又S3=3a1+3d=162,则d=45,a3=a1+2d=99=OP32.令P3(m,n),则有m29-n2=1,m2+n2=99.解得m2=90,n2=9,即mn==±±33姨10,.∴符合条件的一个P3的坐标为(3姨10,3).(2)已知数列a n成等差数列,当n≥2时,an-an-1=OPn2-OPn-12=(xn2+yn2)-(xn-12+yn-12)=(xn2-xn-12)+(yn2-yn-12)=xn2-xn-12+2p(xn-xn-1)=d.∴n≥2时,(xn+p)2-(xn-1+p)2=xn2-xn-12+2p(xn-xn-1)=d.∴数列{(xn+p)2}为等差数列.例1已知F1,F2是椭圆x2a2+y2b2=1的左、右焦点,P是椭圆上的一动点,从椭圆的焦点F2向焦点三角形F1PF2中的∠F1PF2的外角平分线引垂线,垂足为Q(如图1),求动点Q的轨迹.解题目中涉及椭圆的两个焦点F1,F2,可用第一定义来求解...