摘要:
一、直线与圆锥曲线位置关系问题这种问题实际上是讨论直线方程和圆锥曲线方程组成的方程组是否有实解的问题.通过消元最终归结为讨论一元二次方程ax2+bx+c=0的解的个数问题.要注意a≠0与a=0两种情形,同时要特别重视判别式的作用.例1直线y=kx-1与抛物线(y+1)2=4(x-2)只有一个公共点,则k的值为.解(1)若k=0,y=-1,显然直线与(y+1)2=4(x-2)只有一个公共点.(2)若k≠0,由y=kx-1,(y+1)2=4(x-2),得k2x2-4x+8=0.∴驻=16-4k2×8=0,即k=±姨22.故k的值可能为0,-姨22,姨22.二、弦长问题若直线l与圆锥曲线的交点为A(x1,y1),B(x2,y2),由AB=(x2-x1)2+(y2-y1)2姨和kAB=y2-y1x2-x1,得AB=1+kAB2姨x2-x1=1+1kAB2姨y2-y1.例2已知点A(-姨3,0)和点B(姨3,0),动点C到A,B两点的距离之差的绝对值为2,点C的轨迹与直线y=x-2交于D,E两点,求线段DE的长.解设点C(x,y),则CA-CB=±2.根据双曲线的定义,可知点C的轨迹是双曲线,设为x2a2-y2b2=1...