摘要:
设A、B、C是两两互素的正整数,m,n,r是大于1的正整数,对于丢番图方程Axm+Byn=Czr,(x,y,z)=1,(1)/(m)+(1)/(n)+(1)/(r)<1,1989年,Tijdeman猜想:该方程仅有有限多组整数解(x,y,z);1997年,Andrew Beal猜想:如果A=B=C=1,m,n,r均大于2,则该方程没有正整数解.关于上述猜想,本文作者获得了如下结果:设p为奇素数,证明了丢番图方程x2p+2kyp=z2,(x,y)=1,k≥1,y≠0仅有整数解k=3,|x|=y=1,|z|=3和k=2pl+3,|x|=2l,y=1,|z|=3·2pl.从而更正了王云葵关于上述方程所获得的结果.