基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出利用支持向量机进行电力变压器油中溶解气体浓度预测的方法,该方法能很好地解决小样本的学习问题,适合贫数据的DGA建模且具有较高的精度和良好的泛化能力.
推荐文章
基于GRA-CEEMDAN-BiLSTM的变压器油中溶解气体浓度预测
油中溶解气体
灰色关联分析
双向长短期记忆神经网络
基于EMD和GCT的变压器油中溶解气体预测
变压器
油中溶解气体
时间序列预测
经验模态分解
格兰杰因果关系检验
时间注意力机制
长短时记忆网络
变压器油中溶解气体的分析与判断
变压器油
溶解气体
色谱分析
故障
分析判断
变压器油中溶解气体在线监测系统的应用
电力变压器
溶解气体
在线监测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的变压器油中溶解气体浓度预测
来源期刊 华北电力大学学报 学科 工学
关键词 电力变压器 油中气体浓度 支持向量机
年,卷(期) 2006,(6) 所属期刊栏目 电气工程
研究方向 页码范围 6-9
页数 4页 分类号 TK31
字数 2781字 语种 中文
DOI 10.3969/j.issn.1007-2691.2006.06.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱永利 华北电力大学电气工程学院 268 5516 39.0 62.0
2 王芳 华北电力大学计算机科学与技术学院 10 67 5.0 8.0
3 张小奇 华北电力大学电气工程学院 2 19 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (1848)
参考文献  (6)
节点文献
引证文献  (14)
同被引文献  (15)
二级引证文献  (8)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(4)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(3)
  • 引证文献(1)
  • 二级引证文献(2)
2014(3)
  • 引证文献(2)
  • 二级引证文献(1)
2015(3)
  • 引证文献(2)
  • 二级引证文献(1)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
电力变压器
油中气体浓度
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华北电力大学学报(自然科学版)
双月刊
1007-2691
13-1212/TM
大16开
北京市德胜门外朱辛庄北农路2号
18-138
1974
chi
出版文献量(篇)
2661
总下载数(次)
0
总被引数(次)
34067
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导