原文服务方: 杭州电子科技大学学报(自然科学版)       
摘要:
该文中给出从 C0 (Bn) 到 A0 (φ),从 L1 (Bn) 到 A1 (Ψ) 和从 L∞(Bn) 到 A∞(φ) 的有界投影并利用这些有界投影来证明(A0(φ))*A1(Ψ) 和 (A1(Ψ))*A∞(φ).同时还获得对 L1(Bn),L∞(Bn),C0(Bn)和M(Bn)等赋范线性空间的一个分解定理.
推荐文章
有界对称域上混合范数空间Ap,q,α的一些性质
有界对称域
混合范数空间
乘子
Cn中加权解析Lipschitz空间上复合算子的有界性
单位球
加权Lipschitz空间
复合算子
有界性
Hilbert空间中框架的若干性质
Hilbert空间
框架
算子
混合范数空间函数的零点
Hardy空间
Bergman空间
零点集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Cn中加权混合范数空间Ap,q(Ψ)的若干性质
来源期刊 杭州电子科技大学学报(自然科学版) 学科
关键词 全纯函数 投影算子 正规对 对偶性 直和分解
年,卷(期) 2008,(1) 所属期刊栏目
研究方向 页码范围 86-89
页数 4页 分类号 O174.5
字数 语种 中文
DOI 10.3969/j.issn.1001-9146.2008.01.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖建斌 杭州电子科技大学理学院 32 95 5.0 9.0
2 何再银 杭州电子科技大学理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(1)
  • 二级参考文献(0)
1974(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
全纯函数
投影算子
正规对
对偶性
直和分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
杭州电子科技大学学报(自然科学版)
双月刊
1001-9146
33-1339/TN
chi
出版文献量(篇)
3184
总下载数(次)
0
总被引数(次)
11145
相关基金
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导