原文服务方: 计算机测量与控制       
摘要:
遗传算法是一种能够借鉴生物界自然选择和进化机制发展起来的高度并行、随机,自适应搜索算法;为解决传统遗传算法早熟及收敛速度慢的问题,提出了一种改进的自适应遗传算法,改进后的遗传算法在全局优化和快速收敛能力上有较大的提高;文章针对多征兆、多故障的汽轮发电机组的故障诊断系统.对采用改进后的自适应遗传算法(AGA)和RBF径向基函数神经网络相结合进行故障模式识别的方法进行研究;仿真结果表明,该方法对于汽轮发电机组的故障诊断具有较高的实用价值.
推荐文章
汽轮发电机组振动故障诊断的Petri网模型
Petri网
汽轮发电机组
振动故障诊断
基于离散BAM网络的汽轮发电机组振动故障诊断的应用研究
BAM神经网络
故障诊断
汽轮发电机组
振动故障
汽轮发电机组轴系动力特性综合分析
汽轮发电机组
激振力
动力特性
汽轮发电机振动故障分析与诊断
汽轮发电机
故障树分析
振动故障
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 AGA和NN在汽轮发电机组故障诊断的应用
来源期刊 计算机测量与控制 学科
关键词 自适应遗传算法 神经网络 故障诊断
年,卷(期) 2008,(8) 所属期刊栏目 自动化测试
研究方向 页码范围 1090-1092
页数 3页 分类号 TP206.3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张航 中南大学信息科学与工程学院 80 1075 16.0 31.0
2 熊富强 中南大学信息科学与工程学院 8 90 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (77)
参考文献  (7)
节点文献
引证文献  (5)
同被引文献  (45)
二级引证文献  (11)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(5)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(0)
  • 二级引证文献(1)
2011(1)
  • 引证文献(0)
  • 二级引证文献(1)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
自适应遗传算法
神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
相关基金
湖南省自然科学基金
英文译名:Natural Science Foundation of Hunan Province
官方网址:http://jj.hnst.gov.cn/
项目类型:一般面上项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导