Hierarchical Cellular Networks (HCN) offer more efficient channel utilization and better quality of service (QoS) under the high tele-traffic condition compared to the single-tier system. One of the important measures of QoS in HCN as in any single-tier system is the handoff dropping rate. Although the existing approaches such as guard channel and queuing can reduce forced termination probability, they also result in higher new call blocking probability. The channel sub-rating strategy has found to be an effective technique to reduce the handoff force termination probability while preserving the new call blocking probability in a single-tier system. In this paper, we propose a new call admission control scheme for HCN based on the channel sub-rating. Analytic models based on 1-D Markov process in microcell and 2-D Markov process in macrocell are developed. Experimental results show that our scheme achieves lower blocking and forced termination probabilities compared to the traditional guard channel scheme. The effect of channel sub-rating on the voice quality degradation is also studied. Results demonstrate that we can establish a good balance between the forced termination probability and the voice quality degradation by varying the number of sub-ratable full-rate channels.