In high frequency surface wave radar (HFSWR) applications, range and azimuth resolutions are usually lim-ited by the bandwidth of waveforms and the physical dimension of the radar aperture, respectively. In this paper, we propose a concept of multiple-input multiple-output (MIMO) HFSWR system with widely sepa-rated antennas transmitting and receiving sparse frequency waveforms. The proposed system can overcome the conventional limitation on resolutions and obtain high resolution capability through this new configura-tion. Ambiguity function (AF) is derived in detail to evaluate the basic resolution performance of this pro-posed system. The advantages of the system of fine resolution and low peak sidelobe level (PSL) are demon-strated by the AF analysis through numerical simulations. The impacts of Doppler effect and the geometry configuration are also studied.