基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In Wireless Sensor Networks (WSNs), sensor nodes are developed densely. They have limit processing ca-pability and low power resources. Thus, energy is one of most important constraints in these networks. In some applications of sensor networks, sensor nodes sense data from the environment periodically and trans-mit these data to sink node. In order to decrease energy consumption and so, increase network’s lifetime, volume of transmitted data should be decreased. A solution, which is suggested, is aggregation. In aggrega-tion mechanisms, the nodes aggregate received data and send aggregated result instead of raw data to sink, so, the volume of the transmitted data is decreased. Aggregation algorithms should construct aggregation tree and transmit data to sink based on this tree. In this paper, we propose an automaton based algorithm to con-struct aggregation tree by using energy and distance parameters. Automaton is a decision-making machine that is able-to-learn. Since network’s topology is dynamic, algorithm should construct aggregation tree peri-odically. In order to aware nodes of topology and so, select optimal path, routing packets must be flooded in entire network that led to high energy consumption. By using automaton machine which is in interaction with environment, we solve this problem based on automat learning. By using this strategy, aggregation tree is reconstructed locally, that result in decreasing energy consumption. Simulation results show that the pro-posed algorithm has better performance in terms of energy efficiency which increase the network lifetime and support better coverage.
推荐文章
德国版智能电网“E-Energy”
智能电网
E-Energy
能源互联网
分布式能源
Low net primary productivity of dominant tree species in a karst forest, southwestern China: first e
Biomass increment
Tree ring
Girth measurement
Karst evergreen and deciduous broadleaved forest
Allometric functions
基于USB2.0的高象素CMOS Sensor疵点检测系统
USB2.0
疵点
图像处理
检测
ZigBee协议栈wireless UART模板网络自启动的实现
ZigBee协议栈
绑定
网络自启动
wireless UART
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 AEESPAN: Automata Based Energy Efficient Spanning Tree for Data Aggregation in Wireless Sensor Networks
来源期刊 无线传感网络(英文) 学科 工学
关键词 AUTOMATA Learning WIRELESS SENSOR Networks Data AGGREGATION Energy Efficient SPANNING TREE
年,卷(期) 2009,(4) 所属期刊栏目
研究方向 页码范围 316-323
页数 8页 分类号 TN92
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
AUTOMATA
Learning
WIRELESS
SENSOR
Networks
Data
AGGREGATION
Energy
Efficient
SPANNING
TREE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线传感网络(英文)
月刊
1945-3078
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
358
总下载数(次)
0
总被引数(次)
0
论文1v1指导