基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在对DBSCN与K-means两种经典聚类算法分析研究基础上,结合中文文本数据的特点,对这两种方法进行结合与改进,提出一种中文文本聚类方法:DKTC.该算法能自动产生簇的个数,且对"噪声"或异常数据不敏感,对数据的输入顺序不敏感,另外,与DBSCAN相比,该算法有更高的处理效率.实验表明,DKTC算法不仅能对中文文本进行聚类,且与传统DBSCN与K-means法相比,聚类效果都有一定程度的改善.
推荐文章
基于主题概念聚类的中文文本聚类
中文文本聚类
HowNet
主题概念
Chmeleon算法
基于语义列表的中文文本聚类算法
文本聚类
文本表示
语义列表
相似度计算
聚簇表示
一种PST_LDA中文文本相似度计算方法
词性标注
LDA模型
PST_LDA模型
文本相似度计算
基于潜在语义索引的中文文本聚类的研究
文本聚类
潜在语义索引
向量空间模型
信息检索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 DKTC:一种中文文本聚类方法
来源期刊 图书情报工作 学科 工学
关键词 文本聚类 聚类算法 中文信息处理
年,卷(期) 2009,(1) 所属期刊栏目 信息技术
研究方向 页码范围 109-112,33
页数 5页 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘泉凤 10 69 3.0 8.0
2 张义军 4 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (276)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(1)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本聚类
聚类算法
中文信息处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
图书情报工作
半月刊
0252-3116
11-1541/G2
16开
北京中关村北四环西路33号
2-412
1980
chi
出版文献量(篇)
11437
总下载数(次)
32
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导