基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为克服BP神经网络模型及其学习算法中的固有缺陷,构造了第二类Chebyshev前向神经网络模型,提出该神经网络模型权值直接确定法和结构自适应确定法.理论分析及仿真实验均表明,该系统弥补了BP神经网络的某些固有缺陷.相比同构型BP神经网络,其计算速度和工作精度均有大幅提高.
推荐文章
Padé有理式神经网络及其权值直接确定法
Padé近似
有理式神经网络
权值修正
权值直接确定法
Hermite插值神经网络权值和结构确定理论探讨
前向神经网络
Hermite插值
权值直接确定方法
网络结构自确定方法
BP神经网络
中心、方差及权值直接确定的RBF神经网络分类器
RBF神经网络
分类
中心
方差
权值直接确定
模式识别
权值与结构双确定法的RBF神经网络分类器
RBF神经网络
模式分类器
边增边删型
权值与结构双确定法
抗噪性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 第二类Chebyshev前向神经网络权值直接确定及结构自适应确定
来源期刊 大连海事大学学报 学科 工学
关键词 神经网络 正交多项式 权值直接确定 网络结构 自适应
年,卷(期) 2009,(1) 所属期刊栏目 自动化
研究方向 页码范围 80-84
页数 5页 分类号 TP183
字数 3276字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张雨浓 中山大学信息科学与技术学院 74 496 13.0 16.0
2 姜孝华 中山大学信息科学与技术学院 31 209 10.0 12.0
3 肖秀春 广东海洋大学信息学院 19 126 8.0 10.0
7 邹阿金 广东海洋大学信息学院 11 66 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (26)
参考文献  (5)
节点文献
引证文献  (10)
同被引文献  (36)
二级引证文献  (19)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(4)
  • 引证文献(2)
  • 二级引证文献(2)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(8)
  • 引证文献(1)
  • 二级引证文献(7)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
研究主题发展历程
节点文献
神经网络
正交多项式
权值直接确定
网络结构
自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连海事大学学报
季刊
1006-7736
21-1360/U
大16开
大连市凌海路1号
1957
chi
出版文献量(篇)
2537
总下载数(次)
4
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导