基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
mode decomposition-support vector machine method
海洋表面温度
经验模态分解
支持向量机
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Signal Classification Method Based on Support Vector Machine and High-Order Cumulants
来源期刊 无线传感网络(英文) 学科 工学
关键词 HIGH-ORDER CUMULANTS Support VECTOR Machine KERNEL Function SIGNAL Classification
年,卷(期) 2010,(1) 所属期刊栏目
研究方向 页码范围 48-52
页数 5页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
HIGH-ORDER
CUMULANTS
Support
VECTOR
Machine
KERNEL
Function
SIGNAL
Classification
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线传感网络(英文)
月刊
1945-3078
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
358
总下载数(次)
0
总被引数(次)
0
论文1v1指导