基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper, two Artificial Neural Network (ANN) models using radial basis function (RBF) nets are developed for the design of Aperture Coupled Microstrip Antennas (ACMSA) for different number of design parameters. The effect of increasing the number of design parameters on the ANN model is also discussed in this work. The performances of the models when compared are found that on decreasing the number of design parameters, accuracy of the model is in-creased. The results given by the prepared models are comparable with the results of the IE3D software. So, these models are accurate enough to measure the design parameters of ACMSAs. Thus the neural network approach elimi-nates the long time consuming process of finding various designing parameters using costly software packages.
推荐文章
面向网状信息的Radial+Focus可视化
网状信息
Radial+Focus可视化
先验重要度
交互历史
布局算法
Using Geomechanical Method to Predict Tectonic Fractures in Low-Permeability Sandstone Reservoirs
Low-permeability sandstone reservoir
Fracture parameters
Geomechanical method
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
基于Advance PLD Design的PLD设计与仿真
可编程逻辑器件
Advance PLD Design
设计与仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Design of Aperture Coupled Microstrip Antenna Using Radial Basis Function Networks
来源期刊 无线工程与技术(英文) 学科 医学
关键词 Artificial NEURAL NETWORK RBF NETS ACMSA
年,卷(期) 2010,(2) 所属期刊栏目
研究方向 页码范围 64-68
页数 5页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Artificial
NEURAL
NETWORK
RBF
NETS
ACMSA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线工程与技术(英文)
季刊
2152-2294
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
154
总下载数(次)
0
总被引数(次)
0
论文1v1指导