作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究了一个m-维耦合非自治的Lorenz格点系统,证明了当耦合系数充分大时,在Neumann和周期边界条件下耦合非自治的Lorenz格点系统的解渐近同步.
推荐文章
含Neumann边界条件的LDG方法的稳定性
LDG方法
Neumann边界条件
稳定性
具连续变量差分方程的周期解与渐近周期解
差分方程
连续变量
周期解
渐近周期解
三维捕食链周期非自治扩散系统正ω周期解的存在性
持续生存
全局渐近稳定
周期解
非自治
扩散
关于非齐次边界条件的处理
非齐次
边界条件
未知函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 具Neumann和周期边界条件的耦合非自治的Lorzenz格点系统解的渐近同步性
来源期刊 西安工业大学学报 学科 数学
关键词 点耗散 耦合 渐近同步性 Lorenz方程
年,卷(期) 2010,(3) 所属期刊栏目 研究简报
研究方向 页码范围 298-302
页数 分类号 O175.1
字数 4067字 语种 中文
DOI 10.3969/j.issn.1673-9965.2010.03.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 董旭华 西安工业大学数理系 6 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
点耗散
耦合
渐近同步性
Lorenz方程
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安工业大学学报
双月刊
1673-9965
61-1458/N
大16开
陕西省西安市未央大学园区学府中路2号西安工业大学(未央校区)031号信箱
1981
chi
出版文献量(篇)
3064
总下载数(次)
9
总被引数(次)
16012
论文1v1指导