基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In 2004, Jeff Hawkins presented a memory-prediction theory of brain function, and later used it to create the Hierar-chical Temporal Memory model. Several of the concepts described in the theory are applied here in a computer vision system for a mobile robot application. The aim was to produce a system enabling a mobile robot to explore its envi-ronment and recognize different types of objects without human supervision. The operator has means to assign names to the identified objects of interest. The system presented here works with time ordered sequences of images. It utilizes a tree structure of connected computational nodes similar to Hierarchical Temporal Memory and memorizes frequent sequences of events. The structure of the proposed system and the algorithms involved are explained. A brief survey of the existing algorithms applicable in the system is provided and future applications are outlined. Problems that can arise when the robot’s velocity changes are listed, and a solution is proposed. The proposed system was tested on a sequence of images recorded by two parallel cameras moving in a real world environment. Results for mono- and ste-reo vision experiments are presented.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Data Transfer Object模式探讨
Data Transfer Object 三层应用 DataSet
An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary min
Alkaline feldspar
Dissolution rate
Precipitation
Mineral conversion
Secondary porosity
Identification of bacterial fossils in marine source rocks in South China
South China
Excellent marine source rocks
Bacterial fossil
Sedimentary environment
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Object Identification in Dynamic Images Based on the Memory-Prediction Theory of Brain Function
来源期刊 智能学习系统与应用(英文) 学科 工学
关键词 MEMORY PREDICTION Framework Mobile ROBOTICS COMPUTER VISION UNSUPERVISED Learning
年,卷(期) 2010,(4) 所属期刊栏目
研究方向 页码范围 212-220
页数 9页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MEMORY
PREDICTION
Framework
Mobile
ROBOTICS
COMPUTER
VISION
UNSUPERVISED
Learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导