基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The Bengalese finch song has been widely studied for its unique features and similarity to human language. For com-putational analysis the songs must be represented in songnote sequences. An automated approach for this purpose is highly desired since manual processing makes human annotation cumbersome, and human annotation is very heu-ristic and easily lacks objectivity. In this paper, we propose a new approach for automatic detection and recognition of the songnote sequences via image processing. The proposed method is based on human recognition process to visually identify the patterns in a sonogram image. The songnotes of the Bengalese finch are dependent on the birds and similar pattern does not exist in two different birds. Considering this constraint, our experiments on real birdsong data of different Bengalese finch show high accuracy rates for automatic detection and recognition of the songnotes. These results indicate that the proposed approach is feasible and generalized for any Bengalese finch songs.
推荐文章
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
基于Object Detection API的物流单元货架目标检测
深度学习
物流单元货架
目标检测
Faster R-CNN算法
SSD-MobileNet算法
基于谷歌TensorFlow Object Detection的"智慧"分类垃圾桶设计
垃圾智能分类
谷歌TensorFlow
Object Detection
python
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Feasible Approach for Automatic Detection and Recognition of the Bengalese Finch Songnotes and Their Sequences
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 Birdsong Analysis Bengalese Finch SONG Songnote DETECTION and RECOGNITION PATTERN RECOGNITION
年,卷(期) 2010,(4) 所属期刊栏目
研究方向 页码范围 221-228
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Birdsong
Analysis
Bengalese
Finch
SONG
Songnote
DETECTION
and
RECOGNITION
PATTERN
RECOGNITION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导