钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
基础科学期刊
\
大学学报期刊
\
沈阳师范大学学报(自然科学版)期刊
\
磁场中的Klein-Gordon方程的量子与经典对应
磁场中的Klein-Gordon方程的量子与经典对应
作者:
吴闯
张治国
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
Heisenberg对应原理
磁场
Klein-Gordon方程
摘要:
在量子领域,由Bohr对应原理,在大量子数情形下,量子力学应过渡到经典力学.根据Heisenberg对应原理,在经典极限下厄密算符的量子矩阵元对应经典物理量的Fourier展开系数.应用Heisenberg对应原理研究在磁场中粒子的量子经典对应问题.将Heisenberg对应原理应用到相对论领域的Klein-Gordon方程,在一个新的表象的直角坐标系中,从量子力学的矩阵元计算出带电粒子在磁场中Klein-Gordon方程的精确波函数.研究发现,在经典近似下其对应经典运动方程的解.对坐标矩阵元计算表明,在经典近似下坐标随时间周期性变化,粒子的轨道是一个圆,其对应运动形式是匀磁场中的匀速圆周运动.
暂无资源
收藏
引用
分享
推荐文章
改进的变分迭代法在Klein-Gordon方程中的应用
变分迭代法
Klein-Gordon方程
收敛解
用辅助方程法构造时空分数阶Klein-Gordon方程的精确解
非线性Klein-Gordon方程的渐近理论
适定性
渐近理论
Klein-Gordon方程
非线性Klein-Gordon方程的微扰理论
孤子微扰
孤子参数
非线性Klein-Gordon孤子
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
磁场中的Klein-Gordon方程的量子与经典对应
来源期刊
沈阳师范大学学报(自然科学版)
学科
物理学
关键词
Heisenberg对应原理
磁场
Klein-Gordon方程
年,卷(期)
2010,(3)
所属期刊栏目
研究方向
页码范围
379-382
页数
分类号
O413.1
字数
1909字
语种
中文
DOI
10.3969/j.issn.1673-5862.2010.03.016
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
吴闯
沈阳师范大学实验中心
11
19
3.0
4.0
2
张治国
沈阳师范大学物理科学与技术学院
8
8
1.0
2.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(9)
共引文献
(5)
参考文献
(10)
节点文献
引证文献
(4)
同被引文献
(4)
二级引证文献
(0)
1986(1)
参考文献(1)
二级参考文献(0)
1987(1)
参考文献(0)
二级参考文献(1)
1988(1)
参考文献(0)
二级参考文献(1)
1990(1)
参考文献(0)
二级参考文献(1)
1991(3)
参考文献(0)
二级参考文献(3)
1995(1)
参考文献(1)
二级参考文献(0)
1996(1)
参考文献(1)
二级参考文献(0)
2002(1)
参考文献(1)
二级参考文献(0)
2003(3)
参考文献(3)
二级参考文献(0)
2004(1)
参考文献(0)
二级参考文献(1)
2006(1)
参考文献(1)
二级参考文献(0)
2007(1)
参考文献(1)
二级参考文献(0)
2008(1)
参考文献(0)
二级参考文献(1)
2009(2)
参考文献(1)
二级参考文献(1)
2010(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
2011(2)
引证文献(2)
二级引证文献(0)
2013(1)
引证文献(1)
二级引证文献(0)
2014(1)
引证文献(1)
二级引证文献(0)
研究主题发展历程
节点文献
Heisenberg对应原理
磁场
Klein-Gordon方程
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
沈阳师范大学学报(自然科学版)
主办单位:
沈阳师范大学
出版周期:
季刊
ISSN:
1673-5862
CN:
21-1534/N
开本:
大16开
出版地:
沈阳市皇姑区黄河北大街253号
邮发代号:
8-103
创刊时间:
1983
语种:
chi
出版文献量(篇)
2465
总下载数(次)
4
总被引数(次)
12035
期刊文献
相关文献
1.
改进的变分迭代法在Klein-Gordon方程中的应用
2.
用辅助方程法构造时空分数阶Klein-Gordon方程的精确解
3.
非线性Klein-Gordon方程的渐近理论
4.
非线性Klein-Gordon方程的微扰理论
5.
Dirac方程中的量子与经典对应
6.
非线性Klein-Gordon方程的新精确解
7.
受迫广义Klein-Gordon方程的孤子近似解
8.
Klein-Gordon方程的行波解
9.
非线性扰动Klein-Gordon方程初值问题的渐近理论
10.
具有Kratzer型标量势与矢量势的Klein-Gordon方程和Dirac方程的束缚态
11.
非线性Klein-Gordon方程组的精确解
12.
具正初始能量的非线性Klein-Gordon方程
13.
非线性Klein-Gordon方程的广义Hermite谱方法
14.
非线性耦合Klein-Gordon方程组的精确行波解与分支
15.
F展开法在求解一类Klein-Gordon方程中的应用
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
力学
化学
地球物理学
地质学
基础科学综合
大学学报
天文学
天文学、地球科学
数学
气象学
海洋学
物理学
生物学
生物科学
自然地理学和测绘学
自然科学总论
自然科学理论与方法
资源科学
非线性科学与系统科学
沈阳师范大学学报(自然科学版)2022
沈阳师范大学学报(自然科学版)2021
沈阳师范大学学报(自然科学版)2020
沈阳师范大学学报(自然科学版)2019
沈阳师范大学学报(自然科学版)2018
沈阳师范大学学报(自然科学版)2017
沈阳师范大学学报(自然科学版)2016
沈阳师范大学学报(自然科学版)2015
沈阳师范大学学报(自然科学版)2014
沈阳师范大学学报(自然科学版)2013
沈阳师范大学学报(自然科学版)2012
沈阳师范大学学报(自然科学版)2011
沈阳师范大学学报(自然科学版)2010
沈阳师范大学学报(自然科学版)2009
沈阳师范大学学报(自然科学版)2008
沈阳师范大学学报(自然科学版)2007
沈阳师范大学学报(自然科学版)2006
沈阳师范大学学报(自然科学版)2005
沈阳师范大学学报(自然科学版)2004
沈阳师范大学学报(自然科学版)2003
沈阳师范大学学报(自然科学版)2002
沈阳师范大学学报(自然科学版)2001
沈阳师范大学学报(自然科学版)2000
沈阳师范大学学报(自然科学版)2010年第4期
沈阳师范大学学报(自然科学版)2010年第3期
沈阳师范大学学报(自然科学版)2010年第2期
沈阳师范大学学报(自然科学版)2010年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号