基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Patterned-based time series segmentation (PTSS) is an important task for many time series data mining applications. In this paper, according to the characteristics of PTSS, a generalized model is proposed for PTSS. First, a new inter-pretation for PTSS is given by comparing this problem with the prototype-based clustering (PC). Then, a novel model, called clustering-inverse model (CI-model), is presented. Finally, two algorithms are presented to implement this model. Our experimental results on artificial and real-world time series demonstrate that the proposed algorithms are quite effective.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Clustering-Inverse: A Generalized Model for Pattern-Based Time Series Segmentation
来源期刊 智能学习系统与应用(英文) 学科 工学
关键词 Pattern-Based TIME Series SEGMENTATION Clustering-Inverse Dynamic TIME WARPING Perceptually Important Points Evolution Computation Particle SWARM Optimization Genetic Algorithm
年,卷(期) 2011,(1) 所属期刊栏目
研究方向 页码范围 26-36
页数 11页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Pattern-Based
TIME
Series
SEGMENTATION
Clustering-Inverse
Dynamic
TIME
WARPING
Perceptually
Important
Points
Evolution
Computation
Particle
SWARM
Optimization
Genetic
Algorithm
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导