The common marmoset (Callithrix jacchus), a small new world monkey species, has been widely used in various scientific fields. It is necessary to understand connections between specific genotypes, their structure, and function;however, an anatomical atlas of the entire body of the common marmoset has not yet been reported. In addition to conventional absorption, refraction enhanced computed tomography (CT) based on synchrotron radiation can increase the contrast of boundaries between small absorption differences. In this study, to examine the potential of creating an anatomical atlas of the whole body of the common marmoset non-invasively, we visualized an intact marmoset using synchrotron refraction enhanced CT. The cryogenic marmoset was scanned using the medical imaging beamline at the SPring-8 synchrotron radiation research facility in JAPAN. The trabecular structure, articular cartilage, cruciate ligament in the knee joint, and small airways (diameter: > 400 μm) was clearly identified with 50 μm voxel size and 37 keV x-ray energy. The structure of the heart and branching vessels in the kidneys and liver were also identified without contrast agents, and the anatomical structure of the brain was slightly visible. These results show that synchrotron refraction enhanced CT is useful for creating an anatomical atlas non-invasively, and further studies are planned that will combine refraction enhanced CT and other imaging techniques to analyse the morphology and create a complete atlas of the whole body of the common marmoset.