基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In recent years, significant research has been devoted to the development of Intrusion Detection Systems (IDS) able to detect anomalous computer network traffic indicative of malicious activity. While signature-based IDS have proven effective in discovering known attacks, anomaly-based IDS hold the even greater promise of being able to automatically detect previously undocumented threats. Traditional IDS are generally trained in batch mode, and therefore cannot adapt to evolving network data streams in real time. To resolve this limitation, data stream mining techniques can be utilized to create a new type of IDS able to dynamically model a stream of network traffic. In this paper, we present two methods for anomalous network packet detection based on the data stream mining paradigm. The first of these is an adapted version of the DenStream algorithm for stream clustering specifically tailored to evaluate network traffic. In this algorithm, individual packets are treated as points and are flagged as normal or abnormal based on their belonging to either normal or outlier clusters. The second algorithm utilizes a histogram to create a model of the evolving network traffic to which incoming traffic can be compared using Pearson correlation. Both of these algorithms were tested using the first week of data from the DARPA ’99 dataset with Generic HTTP, Shell-code and Polymorphic attacks inserted. We were able to achieve reasonably high detection rates with moderately low false positive percentages for different types of attacks, though detection rates varied between the two algorithms. Overall, the histogram-based detection algorithm achieved slightly superior results, but required more parameters than the clustering-based algorithm. As a result of its fewer parameter requirements, the clustering approach can be more easily generalized to different types of network traffic streams.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Anomalous Network Packet Detection Using Data Stream Mining
来源期刊 信息安全(英文) 学科 医学
关键词 ANOMALY DETECTION Clustering Data Stream Mining INTRUSION DETECTION System HISTOGRAM PAYLOAD
年,卷(期) 2011,(4) 所属期刊栏目
研究方向 页码范围 158-168
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ANOMALY
DETECTION
Clustering
Data
Stream
Mining
INTRUSION
DETECTION
System
HISTOGRAM
PAYLOAD
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息安全(英文)
季刊
2153-1234
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
230
总下载数(次)
0
总被引数(次)
0
论文1v1指导