基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
While a large number of studies have been reported in the literature with reference to the use of Regression model and Artificial Neural Network (ANN) models in predicting stock prices in western countries, the Chinese stock market is much less studied. Note that the latter is growing rapidly, will overtake USA one in 20 - 30 years time and thus be-comes a very important place for investors worldwide. In this paper, an attempt is made at predicting the Shanghai Composite Index returns and price volatility, on a daily and weekly basis. In the paper, two different types of prediction models, namely the Regression and Neural Network models are used for the prediction task and multiple technical indicators are included in the models as inputs. The performances of the two models are compared and evaluated in terms of di- rectional accuracy. Their performances are also rigorously compared in terms of economic criteria like annualized return rate (ARR) from simulated trading. In this paper, both trading with and without short selling has been consid- ered, and the results show in most cases, trading with short selling leads to higher profits. Also, both the cases with and without commission costs are discussed to show the effects of commission costs when the trading systems are in actual use.
推荐文章
Using Sr isotopes to trace the geographic origins of Chinese mitten crabs
Chinese mitten crab
Lakes
Sr isotopes
Geographic origin
基于Price?Mueller模型的护士离职影响因素研究
Price-Mueller(2000)模型
护士离职
机会
工作压力
领导支持
薪酬待遇
影响因素
Morgenstern-Price法计算金场坝水库滑坡稳定性
边坡稳定性分析
Morgenstern-Price法
金场坝水库
反演
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Chinese Stock Price and Volatility Predictions with Multiple Technical Indicators
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 Regression MODEL Artificial NEURAL Network MODEL CHINESE STOCK Market Technical INDICATORS VOLATILITY
年,卷(期) 2011,(4) 所属期刊栏目
研究方向 页码范围 209-219
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Regression
MODEL
Artificial
NEURAL
Network
MODEL
CHINESE
STOCK
Market
Technical
INDICATORS
VOLATILITY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导