基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the present work, a novel image restoration method from noisy data samples is presented. The restoration was performed by using some heuristic approach utilizing data samples and smoothness criteria in spatial domain. Unlike most existing techniques, this approach does not require prior modelling of either the image or noise statistics. The proposed method works in an interactive mode to find the best compromise between the data (mean square error) and the smoothing criteria. The method has been compared with the shrinkage approach, Wiener filter and Non Local Means algorithm as well. Experimental results showed that the proposed method gives better signal to noise ratio as compared to the previously proposed denoising solutions. Furthermore, in addition to the white Gaussian noise, the effectiveness of the proposed technique has also been proved in the presence of multiplicative noise.
推荐文章
关于Domain半群与Domain半环
Domain半群
D-Clifford半群
Domain半环
准连续Domain和稳定映射
准连续Domain
有界完备准连续Domain
稳定映射
代数L-Domain的函数空间
L-domain
步函数
way-below关系
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Non Linear Image Restoration in Spatial Domain
来源期刊 信号与信息处理(英文) 学科 医学
关键词 RESTORATION Nonlinear FILTERING Mean SQUARE ERROR SIGNAL SMOOTHNESS
年,卷(期) 2011,(3) 所属期刊栏目
研究方向 页码范围 211-217
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RESTORATION
Nonlinear
FILTERING
Mean
SQUARE
ERROR
SIGNAL
SMOOTHNESS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
总被引数(次)
0
论文1v1指导