基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出的新算法对gSpan算法做了适用性改进,算法所采用的图编码技术与传统的频繁子图挖掘(FSG),快速频繁子图挖掘(FFSM),基于先验的图挖掘(AGM)等算法对图结构的编码均不同,由于对有向图进行了新的二维特征定义,因此可使算法适用范围有效地扩展至对有向图的学习,称之为基于对gSpan改进的有向频繁子图挖掘算法(DFSS);因目前为止,一系列频繁子图的挖掘大都是基于无向图上的知识发现,对直接作用于有向图的挖掘尚且很少.并且所设计算法较先前基于Apriori思想的FSG,AGM等一系列频繁图挖掘算法,在时间复杂度方面有了一定程度的改进,使得挖掘效率得以提升;实验结果表明在不损失挖掘完整度的前提下,其效率是FFSM算法的70~80倍.
推荐文章
基于FSG的最大频繁子图挖掘算法
数据挖掘
规范编码
最大频繁子图
决策树
子图同构
频繁子图挖掘研究综述
子图同构
频繁子图挖掘
图模型
图产生器
一种基于前缀节点的频繁子图挖掘算法
数据挖掘
频繁子图
同构类
规范化形式
前缀节点
基于分割图集的频繁闭图挖掘算法
大规模图集
频繁子图
子图同构
频繁闭图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于对gSpan改进的有向频繁子图挖掘算法
来源期刊 南京大学学报:自然科学版 学科 工学
关键词 有向图挖掘 gSpan 频繁子图 适用性扩展
年,卷(期) 2011,(5) 所属期刊栏目
研究方向 页码范围 532-543
页数 分类号 TP301.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 业宁 南京林业大学信息技术学院 83 805 16.0 24.0
2 周溜溜 南京林业大学信息技术学院 6 10 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (35)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (1)
二级引证文献  (1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
有向图挖掘
gSpan
频繁子图
适用性扩展
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导