The paper considers new approaches to system analysis of natural phenomena in physics, chemistry and bi- ology. It lays the foundation of the homeostatic determinate systems theory that allows revealing the mecha- nism by which the basic principle of natural science, determinism, is being realized. Evolution of the mate- rial world is represented as inevitable and continuous growth of orderliness (negentropy) based on transition from one type of determinate systems to another. Increasing negentropy is shown to be closely associated with continuous accumulation of information, which determines the natural diversity in physics, chemistry and biology.