In this paper, in order to extend the lattice Boltzmann method to deal with more nonlinear equations, a one-dimensional (1D) lattice Boltzmann scheme with an amending function for the nonlinear Klein-Gordon equation is proposed. With the Taylor and Chapman-Enskog expansion, the nonlinear Klein-Gordon equation is recovered correctly from the lattice Boltzmann equation. The method is applied on some test examples, and the numerical results have been compared with the analytical solutions or the numerical solutions reported in previous studies. The L2, L∞ and Root-Mean-Square (RMS) errors in the solutions show the efficiency of the method computationally.