基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
协同过滤机制利用用户之间的相似性来推荐信息,能够为用户发现新的感兴趣的内容,它作为一种行之有效的技术被应用到很多领域中.但传统的协同过滤算法不能反映用户的多个兴趣及兴趣更新情况.基于此不足,在用户聚类协同过滤算法的基础上进行了改进,其基本思想是在基于用户聚类的基础上研究用户多兴趣的表示.针对用户兴趣偏好及更新情况引入基于时间的数据阈值、兴趣类型和用户项目兴趣权重的概念和公式.在此基础上将它们有机结合,融人基于用户聚类的协同过滤算法的推荐过程中.实验表明,改进后的算法比传统协同过滤算法在推荐准确度上有明显提高.
推荐文章
基于改进协同过滤算法的用户页面兴趣度预测研究
大数据
奇异值分解
用户兴趣度
协作过滤算法
数据稀疏性
基于用户多属性与兴趣的协同过滤算法
协同过滤
冷启动
数据稀疏性
用户多属性
隐性标签
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
基于用户兴趣度和特征的优化协同过滤推荐
用户兴趣度
用户特征
贝叶斯算法
协同过滤
用户相似度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于用户多兴趣的协同过滤策略改进研究
来源期刊 计算机技术与发展 学科 工学
关键词 协同过滤 基于时间的数据阈值 基于兴趣的数据权重 用户多兴趣的表示
年,卷(期) 2011,(4) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 73-76,80
页数 分类号 TP31
字数 4020字 语种 中文
DOI 10.3969/j.issn.1673-629X.2011.04.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐云剑 湖南涉外经济学院计算机科学与技术学部 12 52 5.0 7.0
2 郭艾寅 湖南涉外经济学院计算机科学与技术学部 17 42 3.0 6.0
3 彭黎 湖南大学软件学院 9 59 5.0 7.0
4 徐红 湖南大学软件学院 15 35 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (74)
参考文献  (8)
节点文献
引证文献  (8)
同被引文献  (20)
二级引证文献  (36)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(10)
  • 参考文献(2)
  • 二级参考文献(8)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(5)
  • 引证文献(2)
  • 二级引证文献(3)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(6)
  • 引证文献(1)
  • 二级引证文献(5)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(12)
  • 引证文献(1)
  • 二级引证文献(11)
2019(11)
  • 引证文献(1)
  • 二级引证文献(10)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
协同过滤
基于时间的数据阈值
基于兴趣的数据权重
用户多兴趣的表示
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导