基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
协同过滤算法是电子商务系统中一种重要的个性化推荐技术之一。但是随着电子商务规模的扩大,评分矩阵的稀疏性问题严重的影响了协同过滤算法的推荐效果。该文通过分析并研究了传统的协同过滤算法的不足,提出了一种新的基于用户和项目组合的协同过滤算法,在对稀疏矩阵进行填充时,不仅考虑到了项目之间的相关性,还考虑到了用户之间的相关性,然后在此基础上,构造虚拟的评分矩阵,最后再进行综合推荐。实验结果表明,在评分矩阵极其稀疏的情况下,该算法能有效的提高预测精度。
推荐文章
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于用户历史行为的协同过滤推荐算法
数据挖掘
协同过滤
用户偏好
项目相似度
个性化推荐
基于组合优化理论的协同过滤推荐算法
局部
组合优化理论
协同过滤
推荐算法
稀疏问题
评分精度
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于用户和项目组合的协同过滤推荐算法
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 协同过滤:数据稀疏性:个性化推荐
年,卷(期) 2011,(6) 所属期刊栏目
研究方向 页码范围 3969-3971
页数 3页 分类号 TP393
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 闫洲 上海海事大学计算机信息工程学院 2 4 1.0 2.0
2 石刘红 上海海事大学计算机信息工程学院 3 17 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (21)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤:数据稀疏性:个性化推荐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导