基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前基于端口号匹配和特征码识别的流量分类方法准确率低、应用范围受限等问题,提出一种基于有监督的自组织映射(SSOM)的网络流量分类方法.该方法使用已标注类别的网络流量训练集,通过改变自组织映射(SOM)训练过程中的权值调整规则,使输出层中获胜神经元的选择更容易,各类别之间划分更清晰,从而提高分类性能.实验结果表明,SSOM的分辨率及拓扑连续性均优于SOM,对网络流量分类具有更高的准确率.
推荐文章
基于快速SVM的大规模网络流量分类方法
支持向量机
大规模流量分类
比特压缩
权重SVM
分类器
分类准确率
基于子图模式的网络流量分类方法研究
流量分类
盲分类
匹配
子图模式
一种使用DBSCAN聚类的网络流量分类方法
网络流量分类
主成分分析
特征选择
DBSCAN聚类
基于GA-CFS和AdaBoost算法的网络流量分类
流量分类
相关性特征选择
适应度函数
AdaBoost算法
弱分类器
权重
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SSOM的网络流量分类方法
来源期刊 计算机工程 学科 工学
关键词 自组织映射 网络流量 分类
年,卷(期) 2011,(6) 所属期刊栏目 网络与通信
研究方向 页码范围 104-106
页数 分类号 TP393
字数 3320字 语种 中文
DOI 10.3969/j.issn.1000-3428.2011.06.036
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王勇 桂林电子科技大学信息与通信学院 178 1032 16.0 23.0
2 胡婷 桂林电子科技大学计算机科学与工程学院 7 57 4.0 7.0
3 陶晓玲 桂林电子科技大学信息与通信学院 48 339 10.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (4)
参考文献  (3)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自组织映射
网络流量
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导