基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In Kriging interpolation, the types of variogram model are very finite, which make the variogram very difficult to describe the spatial distributional characteristics of true data. In order to overcome its shortage, an improved interpolation called Support Vector Machine-Kriging interpolation (SVM-Kriging) was proposed in this paper. The SVM-Kriging uses Least Square Support Vector Machine (LS-SVM) to fit the variogram, which needn’t select the basic variogram model and can directly get the optimal variogram of real interpolated field by using SVM to fit the variogram curve automatically. Based on GODAS data, by using the proposed SVM-Kriging and the general Kriging based on other traditional variogram models, the interpolation test was carried out and the interpolated results were analyzed contrastively. The test show that the variogram of SVM-Kriging can avoid the subjectivity of selecting the type of variogram models and the SVM-Kriging is better than the general Kriging based on other variogram model as a whole. Therefore, the SVM-Kriging is a good and adaptive interpolation method.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Improved Kriging Interpolation Technique Based on SVM and Its Recovery Experiment in Oceanic Missing Data
来源期刊 美国计算数学期刊(英文) 学科 医学
关键词 Least SQUARE Support Vector Machine KRIGING INTERPOLATION VARIOGRAM SVM-Kriging
年,卷(期) 2012,(1) 所属期刊栏目
研究方向 页码范围 56-60
页数 5页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Least
SQUARE
Support
Vector
Machine
KRIGING
INTERPOLATION
VARIOGRAM
SVM-Kriging
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导