基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The relationship between commensal bacteria and the epithelial cells lining the colon is normally symbiotic. However, in the setting of diseases which lead to a loss of the protective mucosal layer such as inflammatory bowel disease or colon cancer, commensal bacteria gain the ability to alter both the behavior of epithelial cells as well as their surrounding extra cellular matrix (ECM). While much work has been done to understand the effects of bacteria on diseased epithelial cells in the colon, very little has been done to understand their impact on the ECM. In our previous work, we have shown that topographical changes in the ECM on the luminal side of the colon have a profound influence on the behavior of colonic epithelial cells. However, we do not understand all of the mechanisms that lead to changes in the ECM topography. This study aimed to understand the role that commensal E. coli strains play in altering the ECM topography of type-1 collagen scaffolds. To do this, 1.2 mg/ml type 1 collagen scaffolds were infected with various commensal bacterial strains. At 24 hours post-infection collagen fiber dimensions and substrate topography were determined using standard molecular biology techniques and advanced imaging. Intriguingly, all of the commensal E. coli strains showed some form of substrate degradation. Especially in the case of commensal E. coli strain HS4, maximum nano-scaled protrusions were observed. This data suggests, for the first time, that studying the effects of bacteria alone on the ECM may be critical to improving our understanding of how the cellular microenvironment changes in both health and disease.
推荐文章
LT码译码算法的研究
LT码
喷泉码
MPGE
译码算法
GT器械预备弯曲根管
GT手用锉
根管预备
牙髓腔
基于LT码数据分发协议性能分析
LT码
分发协议
无线传感网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Commensal <i>E. Coli</i>Strains Uniquely Alter the ECM Topography Independent of Colonic Epithelial Cells
来源期刊 生物材料与纳米技术(英文) 学科 医学
关键词 TOPOGRAPHY Extra Cellular Matrix COMMENSAL Bacteria Western Blot Collagen Fiber
年,卷(期) 2012,(1) 所属期刊栏目
研究方向 页码范围 70-78
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TOPOGRAPHY
Extra
Cellular
Matrix
COMMENSAL
Bacteria
Western
Blot
Collagen
Fiber
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物材料与纳米技术(英文)
季刊
2158-7027
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
328
总下载数(次)
0
总被引数(次)
0
论文1v1指导