基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the case of on-line action role-playing game, the combat strategies can be divided into three distinct classes, Strategy of Motion(SM), Strategy of Attacking Occasion (SAO) and Strategy of Using Skill (SUS). In this paper, we analyze such strategies of a basic game model in which the combat is modeled by the discrete competitive Markov decision process. By introducing the chase model and the combat assistant technology, we identify the optimal SM and the optimal SAO, successfully. Also, we propose an evolutionary framework, including integration with competitive coevolution and cooperative coevolution, to search the optimal SUS pair which is regarded as the Nash equilibrium point of the strategy space. Moreover, some experiments are made to demonstrate that the proposed framework has the ability to find the optimal SUS pair. Furthermore, from the results, it is shown that using cooperative coevolutionary algorithm is much more efficient than using simple evolutionary algorithm.
推荐文章
基于层次分析法权重和灰色服务器负载预测的云计算on-line迁移策略
层次分析法
云计算
虚拟机迁移
负载均衡
服务器
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
基于Markov game模型的装备保障信息网络安全态势感知方法研究
装备保障信息网络
安全态势评估
Markov决策过程
博弈论
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Competitive Markov Approach to the Optimal Combat Strategies of On-Line Action Role-Playing Game Using Evolutionary Algorithms
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 GAME Design GAME BALANCE COMPETITIVE MARKOV Decision Process Cooperative Coevolutionary Algorithm COMPETITIVE Coevolution
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 176-187
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GAME
Design
GAME
BALANCE
COMPETITIVE
MARKOV
Decision
Process
Cooperative
Coevolutionary
Algorithm
COMPETITIVE
Coevolution
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导