基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于Haar-like特征的on-line boosting跟踪算法(HBT)把目标跟踪看作是目标与背景的二分类问题,通过在候选区域搜索最大分类置信度的方法得到目标新的位置.但在获取最大置信度时选用的是区域穷举搜索法,当目标过大或者运动速度过快时,很难确保系统的实时性,且易造成跟踪丢失.本文将粒子滤波算法引入HBT目标跟踪框架中,通过建立目标运动模型,并把HBT目标分类置信度与粒子滤波的观测模型结合起来,提出了基于粒子滤波的on-line boosting目标跟踪算法(PFHBT).与HBT算法相比,本文算法不仅加快了计算速度,而且很好地解决了目标速度过快造成跟踪丢失的问题,保证了系统的实时性和鲁棒性.
推荐文章
基于迭代积分粒子滤波的目标跟踪算法?
高斯牛顿迭代
积分卡尔曼滤波
重要性函数
非线性目标跟踪
基于新型粒子群优化的粒子滤波雷达目标跟踪算法
粒子群优化
粒子滤波
目标跟踪
闪烁噪声
基于目标跟踪的风驱动优化粒子滤波算法研究
风驱动优化
粒子滤波
算法改进
仿真
基于改进粒子滤波的静电目标跟踪算法
静电探测
无迹粒子滤波
目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子滤波的on-line boosting目标跟踪算法
来源期刊 广西师范大学学报(自然科学版) 学科 工学
关键词 目标跟踪 on-line boosting 粒子滤波 置信度 运动模型
年,卷(期) 2013,(3) 所属期刊栏目
研究方向 页码范围 100-105
页数 6页 分类号 TP391.41
字数 3536字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙水发 三峡大学智能视觉与图像信息研究所 49 252 9.0 13.0
2 夏平 三峡大学智能视觉与图像信息研究所 63 238 9.0 12.0
3 郭青 三峡大学智能视觉与图像信息研究所 3 23 2.0 3.0
4 覃音诗 三峡大学智能视觉与图像信息研究所 3 35 2.0 3.0
5 马先兵 三峡大学智能视觉与图像信息研究所 3 35 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
on-line boosting
粒子滤波
置信度
运动模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西师范大学学报(自然科学版)
双月刊
1001-6600
45-1067/N
大16开
桂林市育才路15号
48-54
1957
chi
出版文献量(篇)
3550
总下载数(次)
1
总被引数(次)
13610
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导