原文服务方: 信息与控制       
摘要:
提出一种基于遗传粒子滤波器的运动目标跟踪算法,它将Boosting算法和遗传算法引入粒子滤波器,构建了遗传粒子滤波器.该方法首先利用背景信息和目标信息建立特征分类器,将分类器的输出结果作为粒子滤波系统观测的征要信息,进行粒子权值的计算;并在跟踪过程中小断更新特征分类器,从而自适应地更新粒子的权值.为了提高算法的实时性,将遗传算法引入到粒子滤波器,在保证粒子滤波器精度的前提下,减少粒子数目,从而降低算法的运算时间.实验结果表明,所提算法可以根据背景信息的不同自适应地选择特征,在遮挡、形变及背景干扰等情况下,依然可以很好地对目标进行稳定的实时跟踪.
推荐文章
基于统计模型的遗传粒子滤波器人体运动跟踪
统计模型
局域二值模式
遗传粒子滤波器
人体运动跟踪
Bhattacharyya距离
基于t-分布粒子滤波器的目标跟踪
目标跟踪
贝叶斯跟踪
非线性非高斯随机系统
序列重要性采样
t-分布粒子滤波器
ECME算法
无色卡尔曼滤波
自助式粒子滤波器
基于卡尔曼滤波器的运动目标检测与跟踪
视觉监控
背景模型
运动目标检测与跟踪
卡尔曼滤波
基于混合高斯模型和粒子滤波器的跟踪
序列蒙特卡罗
混合高斯模型
人体运动跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传粒子滤波器的运动目标实时跟踪
来源期刊 信息与控制 学科
关键词 粒子滤波器 遗传算法 自适应特征选择 跟踪 boosting算法
年,卷(期) 2008,(6) 所属期刊栏目 论文与报告
研究方向 页码范围 653-659
页数 7页 分类号 TP39
字数 语种 中文
DOI 10.3969/j.issn.1002-0411.2008.06.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 夏利民 中南大学信息科学与工程学院 102 814 16.0 22.0
2 谷士文 中南大学信息科学与工程学院 23 434 9.0 20.0
3 张良春 中南大学信息科学与工程学院 8 85 5.0 8.0
4 谭立球 中南大学信息科学与工程学院 16 516 8.0 16.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (3)
参考文献  (3)
节点文献
引证文献  (8)
同被引文献  (6)
二级引证文献  (2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子滤波器
遗传算法
自适应特征选择
跟踪
boosting算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与控制
双月刊
1002-0411
21-1138/TP
大16开
1972-01-01
chi
出版文献量(篇)
2891
总下载数(次)
0
总被引数(次)
41289
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
湖南省自然科学基金
英文译名:Natural Science Foundation of Hunan Province
官方网址:http://jj.hnst.gov.cn/
项目类型:一般面上项目
学科类型:
论文1v1指导