原文服务方: 计算机应用研究       
摘要:
提出了一种基于统计模型的遗传粒子滤波器人体运动跟踪算法.引入局域二值模式(LBP)算子提取纹理特征,利用颜色直方图与纹理直方图相似度的加权和表示目标相似度,以有效解决自遮挡对跟踪的影响.利用该统计模型精确表示运动人体轮廓,目标形状可由一可变形状参数确定;采用遗传粒子滤波器作为跟踪算法以提高粒子滤波器的鲁棒性和精度.通过预测更新可变形状参数,再利用统计模型中目标形状与形状可变参数的关系得到图像序列各帧中人体轮廓,有效降低了计算量,从而达到快速而准确的跟踪目的.最后用上述方法进行了实验,验证了该方法的实用性和有效性.
推荐文章
基于遗传粒子滤波器的运动目标实时跟踪
粒子滤波器
遗传算法
自适应特征选择
跟踪
boosting算法
基于混合高斯模型和粒子滤波器的跟踪
序列蒙特卡罗
混合高斯模型
人体运动跟踪
基于t-分布粒子滤波器的目标跟踪
目标跟踪
贝叶斯跟踪
非线性非高斯随机系统
序列重要性采样
t-分布粒子滤波器
ECME算法
无色卡尔曼滤波
自助式粒子滤波器
基于改进粒子滤波跟踪算法的运动视频跟踪
运动目标检测
高斯混合模型
背景建模
粒子滤波
RGB颜色直方图
迭代递归
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于统计模型的遗传粒子滤波器人体运动跟踪
来源期刊 计算机应用研究 学科
关键词 统计模型 局域二值模式 遗传粒子滤波器 人体运动跟踪 Bhattacharyya距离
年,卷(期) 2008,(4) 所属期刊栏目 图形图像技术
研究方向 页码范围 1090-1092,1099
页数 4页 分类号 O235
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2008.04.038
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 夏利民 中南大学信息科学与工程学院 102 814 16.0 22.0
2 石华伟 中南大学信息科学与工程学院 2 46 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (1)
二级引证文献  (24)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(2)
  • 引证文献(1)
  • 二级引证文献(1)
2011(5)
  • 引证文献(0)
  • 二级引证文献(5)
2012(5)
  • 引证文献(0)
  • 二级引证文献(5)
2013(3)
  • 引证文献(1)
  • 二级引证文献(2)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
统计模型
局域二值模式
遗传粒子滤波器
人体运动跟踪
Bhattacharyya距离
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导