基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Neural networks based on high-dimensional random feature generation have become popular under the notions extreme learning machine (ELM) and reservoir computing (RC). We provide an in-depth analysis of such networks with respect to feature selection, model complexity, and regularization. Starting from an ELM, we show how recurrent connections increase the effective complexity leading to reservoir networks. On the contrary, intrinsic plasticity (IP), a biologically inspired, unsupervised learning rule, acts as a task-specific feature regularizer, which tunes the effective model complexity. Combing both mechanisms in the framework of static reservoir computing, we achieve an excellent balance of feature complexity and regularization, which provides an impressive robustness to other model selection parameters like network size, initialization ranges, or the regularization parameter of the output learning. We demonstrate the advantages on several synthetic data as well as on benchmark tasks from the UCI repository providing practical insights how to use high-dimensional random networks for data processing.
推荐文章
Diagenetic evolution of clastic reservoirs and its records in fine subsection: significance and appl
Tight sandstone reservoirs
Diagenetic evolution
Fine subsection
Significance
香菇菌株ITS序列分子检测
香菇
菌株
ITS5.8srDNA
特异引物
The in situ spectral methods for examining redox status of c-type cytochromes in metal-reducing/oxid
c-type cytochrome
In situ spectroscopy
Intact cells
Metal reducing bacteria
Fe(Ⅱ) oxidation bacteria
石榴种质资源ITS序列分析
石榴
ITS序列
系统进化树
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Regularization by Intrinsic Plasticity and Its Synergies with Recurrence for Random Projection Methods
来源期刊 智能学习系统与应用(英文) 学科 工学
关键词 Extreme Learning Machine Reservoir Computing MODEL SELECTION Feature SELECTION MODEL Complexity INTRINSIC PLASTICITY REGULARIZATION
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 230-246
页数 17页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Extreme
Learning
Machine
Reservoir
Computing
MODEL
SELECTION
Feature
SELECTION
MODEL
Complexity
INTRINSIC
PLASTICITY
REGULARIZATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导