基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Cavity trees are integral components of healthy forest ecosystems and provide habitat and shelter for a wide variety of wildlife species. Thus, monitoring and predicting cavity tree abundance is an important part of forest management and wildlife conservation. However, cavity trees are relatively rare and their abundance can vary dramatically among forest stands, even when the stands are similar in most other respects. This makes it difficult to model and predict cavity tree density. We utilized data from the Missouri Ozark Forest Ecosystem Project to show that it is virtually impossible to accurately predict cavity tree occurrence for individual trees or to predict mean cavity tree abundance for individual forest stands. However, we further show that it is possible to model and predict mean cavity tree density for larger spatial areas. We illustrate the prediction error monotonically decreases as the spatial scale of predictions in-creases. We successfully explored the utility of three classes of models for predicting cavity tree probability/density: logistic regression, neural network, and classification and regression tree (CART). The results provide valuable insights into methods for landscape-scale mapping of cavity trees for wildlife habitat management, and also on sample size determination for cavity tree surveys and monitoring.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
Geochemical tracing and modeling of surface and deep water-rock interactions in elementary granitic
Weathering
Water pathways
U activity ratios
Sr isotope ratios
Anthropogenic gases (CFC,SF6)
CZO
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Effect of Spatial Scale on Modeling and Predicting Mean Cavity Tree Density: A Comparison of Modeling Methods
来源期刊 林学期刊(英文) 学科 医学
关键词 CART LOGISTIC Regression Neural Network OAK FOREST Prediction ACCURACY
年,卷(期) 2012,(4) 所属期刊栏目
研究方向 页码范围 219-224
页数 6页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CART
LOGISTIC
Regression
Neural
Network
OAK
FOREST
Prediction
ACCURACY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
林学期刊(英文)
季刊
2163-0429
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
314
总下载数(次)
0
总被引数(次)
0
论文1v1指导