作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在描述了聚类算法的基本思想和概念的基础上,介绍了一种常见的聚类算法—K均值和K中心点聚类算法,通过处理认知无线电网络中主用户定位在海量数据中应用K均值聚类算法,对该算法进行分析,仿真结果表明:与传统的主用户定位算法相比,使用K均值聚类算法能够有效地提高定位精度和降低定位算法的复杂度.
推荐文章
基于ISFLA的K均值聚类算法
SFLA
吸引排斥机制
ISFLA
K均值算法
基于人工蜂群优化的K均值聚类算法
聚类分析
K均值算法
人工蜂群算法
聚类中心
优化
基于差分演化的K-均值聚类算法
聚类
差分演化算法
K-均值
基于花粉算法的K均值聚类算法
K均值聚类
花粉算法
初始聚类中心
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K均值聚类的定位算法分析
来源期刊 广西工学院学报 学科 工学
关键词 聚类分析 K均值 认知无线电 定位算法
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 45-48,76
页数 5页 分类号 TP391
字数 3854字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李炜 广西工学院计算机学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (165)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (23)
二级引证文献  (2)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
聚类分析
K均值
认知无线电
定位算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西科技大学学报
季刊
1004-6410
45-1395/T
大16开
广西柳州市东环路268号
1990
chi
出版文献量(篇)
1943
总下载数(次)
0
总被引数(次)
7654
论文1v1指导